Bore 1 1.37 inches 35 mm
Bore 1 1 3/8-6 SPLINE
Bore 2 Minus End Yoke
Compressed (Closed) Length 51.75 inches 1314 mm
Compressed Overall Length 60.00 inches 1524 mm
Connection 1 SPRING-LOK
Connection 2 YOKE ARMS
Extended Length 90.75 inches 2305 mm
Extended Overall Length 99.00 inches 2515 mm
HP@1000RPM 48 HP 36 kilowatts
HP@540RPM 28 HP 21 kilowatts
Length 60.00 inches 1524 mm
Outside Diameter 7.31 inches 186 mm
Shipping Dimensions 56.06″ L  ×  7.31″ H  ×  7.31″ W 142cm L  ×  19cm H  ×  19cm W
Shipping Volume 2995.63 in3 49090 cm3
Shipping Weight 33.82 pounds 15 kilograms
Weight 33.82 pounds 15 kilograms

PTO Shaft Replacement of Weasler 2000 / 14 Series

Specifications of 14 Series PTO shaft

The 14 series PTO Shaft provides reliable service with durable construction. The PTO drive shaft yoke features a 1 in. x 1-1/8 in. solid rectangle bore for simple use. Part of 14 Series, this PTO yoke and shaft are designed to meet your needs. The PTO tractor yoke operates at up to 58 HP for efficiency.

NA 14 Series PTO yoke and shaft to meet your needs
Centerline to End of Shaft: 35-2/3 in.
PTO drive shaft yoke features a 1 in. x 1-1/8 in. solid rectangle bore for easy operation
PTO tractor yoke operates at 58 HP/43 kilowatts @ 1000RPM or 38 HP/28 kilowatts @ 540RPM for efficiency
Weight: 12.7 lb/6 kilograms
Extension size: 25-5/8 in.

PTO Shaft Parts

▎14 / 2000 Series PTO Driveline Parts

▎14 / 2000 Series Square or Rectangular Parts

▎14 / 2000 Series Splined Parts

▎14/2000 Series Quick Disconnect Yokes

▎14 / 2000 Series Clamp Yokes

▎14 / 2000 Series Straight Bores

▎14 / 2000 Series Yokes

▎14 (CAT 3) 50-degree Constant Velocity

▎14 (CAT 3) 50-degree CV End Yokes

▎Torqmaster Clutches

 

PTO Shaft and Agricultural Gearbox

Agricultural gearbox and PTO shaft: These components work together to transfer mechanical power between farm tractors. A PTO shaft converts engine energy into hydraulic pressure. This is what allows the tractor to pull heavy loads. When properly functioning, it reduces the risk of damage to the tractor and to the operator. When used properly, it is an important component of a tractor, but it can also become defective. When choosing an agricultural gearbox, consider the durability and mechanism of the product, as well as its materials. A durable gearbox will last for many years, avoiding repeated replacements. A high-quality agricultural gearbox will be durable for many years to come, and you don’t want to end up replacing it for a while. This can be costly, so consider your needs when purchasing an agricultural gearbox and PTO shaft. HZPT offers PTO shafts and agricultural gearboxes wholesale at low prices! Contact us now if you are interested!

Additional information

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and 6-bolt. Splined rotors fit on splined hubs; 6-bolt rotors will need an adapter to fit on 6-bolt hubs. The 6-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The 2-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.